

Development of the reservoirs

FEDERATION

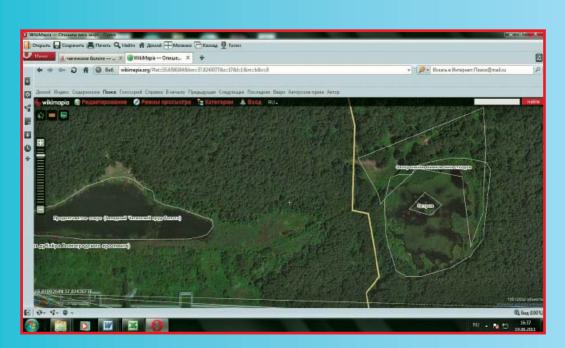
device for water monitoring

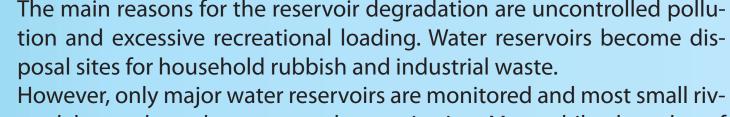
RUSSIAN NATIONAL JUNIOR WATER PRIZE

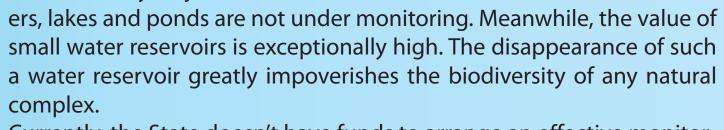
by Kirill Ilyin and Denis Merkulov

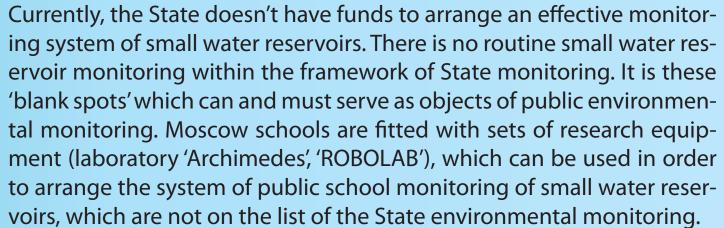
Water: from H_pO to IT

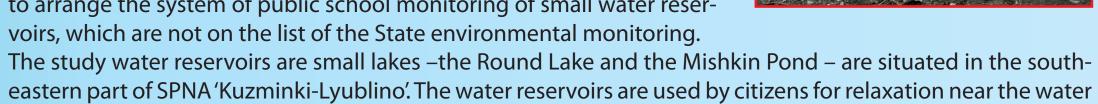
Introduction

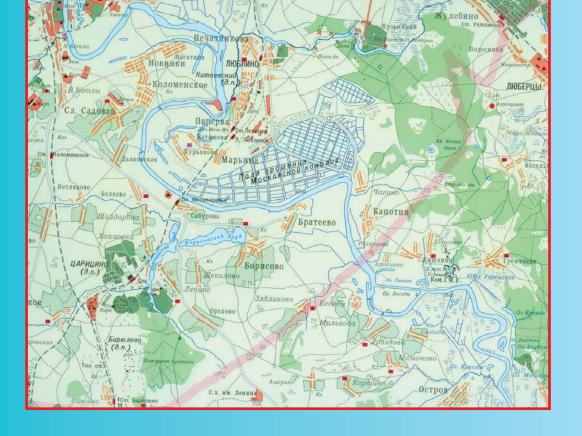



A natural reservoir is a multilevel and autonomous to a considerable degree ecosystem, which includes dozens and hundreds of species of living organisms, which are closely related to one another. It is especially important to mention that such water reservoirs are a kind of self-balancing system. Any change in the environment makes the components of this system react in such a way so that the system could be maximally restored to its original state. Moreover, only natural aquatic ecosystems can sustain the existence of outstanding species of the living organisms listed in the Red Data Book.






The object of research



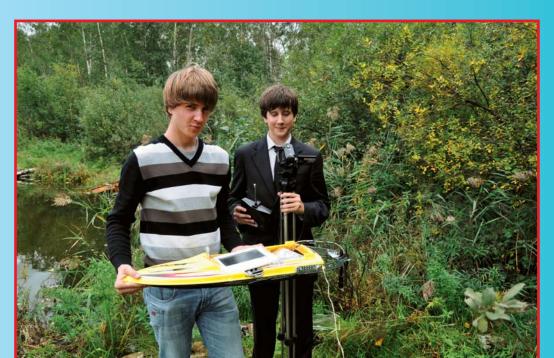
and unprofessional fishing. The Round Lake: the diameter is 190m, the square is 2ha, it has little islands called floating bogs. There are few convenient ways to water, the watersides resemble bogs of an intermediate type. The bottom is silty. The lake is of natural origin.

The Mishkin Pond has a narrowish shape- 400m to the west, its width is approximately 130m, its square is 2ha. There is a power transmission line along the south bank, then there is a plant of special mounting production, there is a sandy beach on the north bank, the south bank and the south-eastern banks are swampy. The pond is of artificial origin. The forest area around the water reservoirs has mainly middle-aged birches and pines.

Organizer of the Russian National Junior Water Prize -

Environmental Projects Consulting Institute

The goal and stages of the project


The goal of the project is to develop a device for primary examination of the state of small water reservoirs.

The stages of the project

- 1. To design an autonomous automatic laboratory (AAL) for primary examination of small water reservoirs;
- 2. To conduct field testing of the autonomous automatic laboratory;
- 3. To evaluate some physical and chemical parameters, which reflect the ecological state of the study water reservoirs;
- 4. To assess the ecological state of the study water reservoirs.

Tab. 1. The results obtained using AAL (mean sample value).

8.10

18.89 18.20

18.88 18.19 18.88 18.18

Developing of the device

As a device of fixation measurement parameters we used school digital laboratory 'Archimedes', which includes tablet PC NOVA 5000 with a software and a set of measure sensors, while designing an autonomous automatic laboratory.

The model of the speed boat 'AVANT-COURIER' was upgraded by us:

- 1. Parts of both boards were deleted and holes for the sensors were made.
- 2. The platform for the sensors was attached to the speed boat with the help of curved metal plates.
- 3. The sensors on the stern of the speed boat were fixed.
- 4. PC NOVA 5000 was fixed in the speed boat hull.
- 5. The sensors to the PC were connected

Note: The tab contains arithmetic mean values from total amount of values obtained

	Matter Concentrations		
Chemical analysis			
рН	6,5-8,5	6,5	8
Carbonate hardness (mg-equiv/l)	10	6	6
Total hardness (mg-equiv/l)	7,0	4	7
Nitrites (mg/l)	3,0	0,5	0,5
Nitrates (mg/l)	45	10	10
Phospates (microgram/l)	3,5	0	0,3
NH4/NH3 (mg/l)	2,0	0	0
Total iron (mg/l)	0,3	0	0
Cu (mg/l)	1	0	0
Dissolved oxygen (mg O2/I)	not below 4	7,5	8,5
Organoleptical analysis			
Colour		yellowish, brownish and yellow	yellowish
Odour (grades)	2	Putrefactive, 3	Putrefactive, 2
Suspended particles		nrecent	Vary faw

Note: The tab contains arithmetic mean values from total amount of values obtained

Conclusions:

- The device designed for monitoring of the state of water reservoirs on the platform shoe of the radio-controlled speed boat, model 'AVANT-COURIER', and the stateful device of the tablet PC NOVA 5000 has proved its value to the full. The device allows to collect primary data about a water reservoir easily, quickly and accurately and it makes it possible to shape a follow-up plan for research.
- 2. Further research via the bioidentification method and the physical and chemical water analyses has confirmed tentative assumptions about the state of the water reservoirs.
- 'The Mishkin Pond'and'The Round Lake'are classified as moderately polluted (quality class 3) water reservoirs of a mesotrophic type, and that makes it possible to use them for swimming and fishing.
- We can recommend the device of an autonomous automatic laboratory designed by us for school public monitoring of small water reservoirs in Moscow.

